Adenosine depresses spontaneous transmitter release from frog motor nerve terminals by acting at an A1-like receptor.

نویسنده

  • S R Barry
چکیده

Adenosine (1 microM to 1 mM) depressed spontaneous transmitter release from frog motor nerve terminals without producing any observable postsynaptic effects. Since this action of adenosine was blocked by 20 microM theophylline and 1 microM 8-phenyltheophylline, adenosine probably acts at a specific receptor on motor nerve terminals to reduce spontaneous transmitter output. The effects of the adenosine analogs, L-N6-phenylisopropyladenosine (L-PIA, 100 pM to 1 microM), D-PIA (100 nM to 100 microM), and 5'-N-ethylcarboxamidoadenosine (NECA, 10nM to 100 microM), were tested on spontaneous transmitter release at the frog neuromuscular junction. L-PIA depressed mepp frequency at a threshold concentration of about 1 nM, was thirteen times more potent than NECA, and was 294 times more effective than D-PIA. The rank-order potency of these analogs indicates that adenosine acts at an A1-like receptor to depress spontaneous transmitter release. Inhibitory actions of maximally effective concentrations of adenosine and L-PIA were also blocked by the A1-specific antagonist, 1-3-dipropyl-8-cyclopentylxanthine (DPCPX) at a concentration of 100 nM. Micromolar concentrations of NECA, an agonist with approximately equal affinity for the A1 and A2 receptors, produced biphasic effects on mepp frequency. Thus, a second adenosine receptor, perhaps of the A2 subtype, may be present on motor nerve terminals and may mediate an increase in spontaneous transmitter release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual effects of theophylline on spontaneous transmitter release from frog motor nerve terminals.

Alkylxanthine drugs, such as theophylline, block adenosine receptors, inhibit phosphodiesterases and other enzymes, and cause the release of calcium from intracellular stores. Adenosine receptor blockade occurs at low micromolar concentrations of the drugs, while other effects occur in the millimolar concentration range. The effects of theophylline were tested on spontaneous transmitter release...

متن کامل

The effect of reduced temperature on the inhibitory action of adenosine and magnesium ion at frog motor nerve terminals.

1. A study was made to exclude the notion that adenosine receptor agonists exert a direct physical blockade of the depolarization-secretion process. Reduced temperature was employed as a tool for distinguishing between physico-chemical processes (such as those which mediate evoked transmitter release) and biochemical mechanisms (such as those which involve second messenger substances) in the ac...

متن کامل

Sphingosine 1-phosphate enhances spontaneous transmitter release at the frog neuromuscular junction.

Intracellular recordings were made from isolated frog sciatic-sartorius nerve-muscle preparations, and the effects of sphingosine 1-phosphate (S1-P) on miniature endplate potentials (MEPPs) were studied. Extracellular application of S1-P (1 and 30 micro M) had no significant effects on the frequency and amplitude of MEPPs. Delivery into nerve terminals by liposomes containing 10(-5), 10(-4) or ...

متن کامل

Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP.

The ionotropic and cytolytic P2X7 receptor is typically found on immune cells, where it is involved in the release of cytokines. Recently, P2X7 receptors were reported to be localized to presynaptic nerve terminals and to modulate transmitter release. In the present study, we reassessed this unexpected role of P2X7 receptors at hippocampal mossy fiber-CA3 synapses. In agreement with previous fi...

متن کامل

Synapse-glia interactions at the mammalian neuromuscular junction.

Perisynaptic Schwann cells (PSCs) play critical roles in regulating and stabilizing nerve terminals at the mammalian neuromuscular junction (NMJ). However, although these functions are likely regulated by the synaptic properties, the interactions of PSCs with the synaptic elements are not known. Therefore, our goal was to study the interactions between mammalian PSCs in situ and the presynaptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Life sciences

دوره 46 19  شماره 

صفحات  -

تاریخ انتشار 1990